impulse

Español

Ejercicio 1 (Tranformada inversa de Laplace)

Enunciado del Ejercicio 1 del examen de la 1 semana de Febrero de Regulacion Automatica I

Solucion:

Vamos a descomponer la transformada de Laplace en fracciones simples:

Español

Programa 5.14 pag 264, Ogata

Español
Vamos a hacer la representacion grafica de la solucion del Ejemplo 5.9 que viene dada por una entrada escalon unitario al sistema(programado en Scilab):

 

Funcion de transferencia del sistema, Transformada de Laplace

 

Programa en Scilab:
num=poly([0 0.35 0.1],'s','coeff');

den=poly([2 3 1],'s','coeff');

t=0:0.1:7;

g=syslin('c',num/den);

gs=csim('step',t,g);

plot(t,gs);

xgrid;

xtitle('respuesta a un Escalon unitario de G(s)=(0.1s^2+0.35s)/(s^2+3s+2)'
,'t(seg)','Amplitud')

 

Respuesta a un escalon unitario del sistema con Scilab

Como se ve la funcion sale del 0 cuando tendria que salir del 0.1 vamos a repetir el programa pero utilizando en vez de una entrada escalon para

$G(s)=\frac{(0.1\cdot s^{2}+0.35 \cdot s)}{(s^{2}+3\cdot s+2)}$, una entrada impulso para el sistema

Funcion de transferencia para un sistema equivalente con entrada impulos, es decir, lo mismo. Si nos fijamos al ejecutar el codigo anterior de Scilab, el sistema nos da un warning despues de ejecutar el csim.

 

Programa en Scilab:
num=poly([0 0.35 0.1 0],'s','coeff');

den=poly([0 2 3 1],'s','coeff');

t=0:0.1:7;

g=syslin('c',num/den);

gs=csim('impulse',t,g);

plot2d(t,gs,2);

xgrid;

xtitle('respuesta a un impulso unitario de G(s)=(0.1s^2+0.35s)/(s^3+3s^2+2s)'
,'t(seg)','Amplitud');

 

Respuesta del sistema equivalente a un impulso con Scilab

Programa 5.9 pag 256, Ogata

Español
Vamos a hacer la representacion grafica de la respuesta a una entrada escalon unitario al siguiente sistema, obteniendo la misma respuesta que en Programa 5.8 (programado en Scilab):

 

Funcion de transferencia, Transformada de Laplace

 

Programa en Scilab:

num=poly([1 0 0],'s','coeff');

den=poly([1 0.2 1],'s','coeff');

t=0:0.1:70;

g=syslin('c',num/den);

gs=csim('impulse',t,g);

plot2d(t,gs);

xgrid;

xtitle('respuesta a un impulso unitario de G(s)=1/(s^2+0.2s+1)');

Respuesta al sistema a un impulso con Scilab

Programa 5.8 pag 255, Ogata

Español
Vamos a hacer la representacion grafica de la respuesta a una entrada impulso unitario al siguiente sistema (programado en Scilab):

 

Funcion de transferencia de segundo orden, Transformada de Laplace


Programa en Scilab:
num=poly([1 0 0],'s','coeff');

den=poly([1 0.2 1],'s','coeff');

t=0:0.1:70;

g=syslin('c',num/den);

gs=csim('impulse',t,g);

plot2d(t,gs);

xgrid;

xtitle('respuesta a un impulso unitario de G(s)=1/(s^2+0.2s+1)');

 

Respuesta del sistema a un impulso unitario con Scilab

Respuesta Transitoria

Español

 

Problema B2.3 pag51 OGATA 4ed(Tranformada de Laplace)

Español
Vamos a calcular las transformadas de Laplace de las funciones siguientes.
a)
Funcion en el tiempo seno coseno
Solucion:
Vamos a cambiar la funcion de la siguiente manera:
Transformacion de la funcion en el tiempo

 

Utilizando las siguiente tranformadas de Laplace.
Transformada de Laplace de la funcion seno

 

Con lo que obtenemos:
Transformada de Laplace de la funcion en el tiempo

 



b)
funcion en el tiempo exponecial  por seno

 

Solucion:
Utilizando las siguiente Tranformadas de Laplace y propiedades de la Transformada de Laplace.
Propiedad de la transformada de Laplace
 
Propiedad de la transformada de Laplace con exponencial
 
Transformada de Laplace de la funcion seno
 
Con lo que obtenemos:

 

Transformada de Laplace de la funcion en el tiempo

 

Vamos a comprobar el resultado con el Scilab.
t=0:0.1:5;

ft=t.*exp(-t).*sin(5*t);

s=%s;
fs=10*(s+1)/((s+1)^2+5^2)^2;

fs2=syslin('c',fs);

fs1=csim('impulse',t,fs2);

subplot(2,1,1);

plot2d(t,ft,2);

xtitle('Enunciado');

xgrid;

subplot(2,1,2);

plot2d(t,fs1,1);

xtitle('Solucion');

xgrid;
Respuesta en el tiempo a un impulso de la transformada de Laplace con Scilab

Problema B2.2 pag51 OGATA 4ed(Tranformada de Laplace)

Español
Vamos a calcular las transformadad de Laplace de las funciones siguientes.

a)

 

\begin{displaymath}f(t)=3\cdot sen(5\cdot t+\frac{\pi}{4})\end{displaymath}


 

Solucion:
Vamos a descomponer la funcion de la siguiente manera:

 

Funcion en el tiempo seno


 

Utilizando las siguientes tranformadas.

 

Descomposicion de la funcion en el tiempo seno


 

 

Transformada de Laplace de una funcion seno


Obtendriamos:

 

Transformada de Laplace de una funcion coseno


 

Vamos a comprobar el resultado con el Scilab.
t=0:0.5:50;

ft=3*sin(5*t+(%pi/4));

s=%s;

fs=3*(5/(s^2+5^2))*cos(%pi/4)+3*(s/(s^2+5^2))*sin(%pi/4);

fs2=syslin('c',fs);

fs1=csim('impulse',t,fs2);

subplot(2,1,1);

plot2d(t,ft,2);

xtitle('Enunciado');

xgrid;

subplot(2,1,2);

plot2d(t,fs1,1);

xtitle('Solucion');

xgrid;

 

Representacion en el tiempo de la tranformada de Laplace para una entrada impulso con Scilab

b)

 

Funcion en el tiempo coseno


 

 

Solucion:
Vamos a descomponer la funcion de la siguiente manera:

 

Descomposicion de la funcion coseno


 

Utilizando las siguientes tranformadas.

 

Transformada de Laplace de un escalon unitario


 

 

Transformada de Laplace de una funcion coseno


 

Obtendriamos:

 

Transformada de Laplace de la funcion


 

Vamos a comprobar el resultado con el Scilab.
t=0:0.5:50;

ft=0.3*ones(size(t,2))-0.3*cos(2*t);

s=%s;

fs=0.3*(1/s)-0.3*(s/(s^2+2^2));

fs2=syslin('c',fs);

fs1=csim('impulse',t,fs2);

subplot(2,1,1);

plot2d(t,ft,2);

xtitle('Enunciado');

xgrid;

subplot(2,1,2);

plot2d(t,fs1,1);

xtitle('Solucion');

xgrid;
Representacion en el tiempo de la tranformada de Laplace para una entrada impulso con Scilab

 

Páginas

Pin It
Subscribe to RSS - impulse