coeff

Español

Cuestion 4 (Sistemas Discretos, Transformada Z)

Ejemplo 5.13 pag 278, Ogata

Español

Vamos a calcular Routh mediante Scilab del siguiente polinomio:

Polinomio

Programa en Scilab:

h=poly([5 4 3 2 1],'s','coeff');

r=routh_t(h);

r




-->r
 r  =
 
    1.    3.    5.  
    2.    4.    0.  
    1.    5.    0.  
  - 6.    0.    0.  
    5.    0.    0.

Programa 5.18 pag 274 con Scilab

Español

Vamos a hacer la representacion grafica de la solucion del Ejemplo resuelto de la pagina 271 mediante Scilab:

 

Programa en Scilab:

num=poly([100 10 0],'s','coeff');

den=poly([100 10 1],'s','coeff');

t1=0:0.001:0.537;

t2=0.538:0.001:1.5;

x1=2.452*(t1^2);

x2=0.707*ones(t2);

y=syslin('c',num/den);

x=[x1 x2];

t=[t1 t2];

g=csim(x,t,y);

plot2d(t,-x,2);

plot2d(t,-g,5);

xgrid;

xtitle('Respuesta del sistema de resorte-masa-amortiguador colgado'
,'t(seg)','Entrada X negativa y salida Y negativa');

legends(['X','Y'],[2,5],opt=4);
Respuesta del sistema de resorte-masa-amortiguador colgado con Scilab

 

 

Programa 5.14 pag 264, Ogata

Español
Vamos a hacer la representacion grafica de la solucion del Ejemplo 5.9 que viene dada por una entrada escalon unitario al sistema(programado en Scilab):

 

Funcion de transferencia del sistema, Transformada de Laplace

 

Programa en Scilab:
num=poly([0 0.35 0.1],'s','coeff');

den=poly([2 3 1],'s','coeff');

t=0:0.1:7;

g=syslin('c',num/den);

gs=csim('step',t,g);

plot(t,gs);

xgrid;

xtitle('respuesta a un Escalon unitario de G(s)=(0.1s^2+0.35s)/(s^2+3s+2)'
,'t(seg)','Amplitud')

 

Respuesta a un escalon unitario del sistema con Scilab

Como se ve la funcion sale del 0 cuando tendria que salir del 0.1 vamos a repetir el programa pero utilizando en vez de una entrada escalon para

$G(s)=\frac{(0.1\cdot s^{2}+0.35 \cdot s)}{(s^{2}+3\cdot s+2)}$, una entrada impulso para el sistema

Funcion de transferencia para un sistema equivalente con entrada impulos, es decir, lo mismo. Si nos fijamos al ejecutar el codigo anterior de Scilab, el sistema nos da un warning despues de ejecutar el csim.

 

Programa en Scilab:
num=poly([0 0.35 0.1 0],'s','coeff');

den=poly([0 2 3 1],'s','coeff');

t=0:0.1:7;

g=syslin('c',num/den);

gs=csim('impulse',t,g);

plot2d(t,gs,2);

xgrid;

xtitle('respuesta a un impulso unitario de G(s)=(0.1s^2+0.35s)/(s^3+3s^2+2s)'
,'t(seg)','Amplitud');

 

Respuesta del sistema equivalente a un impulso con Scilab

Páginas

Pin It
Subscribe to RSS - coeff