pfss

Undefined

Ejercicio 1 (Tranformada inversa de Laplace)

Enunciado del Ejercicio 1 del examen de la 1 semana de Febrero de Regulacion Automatica I

Solucion:

Vamos a descomponer la transformada de Laplace en fracciones simples:

Español

Cuestion 3 (Sistemas Discretos, regulador)

Cuestion 4 (Sistemas Discretos, Transformada Z)

Cuestion 3 (Sistemas Discretos, respuesta a un impulso)

Problema A.5.9 pag 302, Ogata

Español
Vamos a hacer la expansion en fracciones simples con el Scilab del siguiente sistema:
Programa en Scilab:

 

Funcion de tranferencia, Transformada de Laplace


 

Programa en Scilab

// Define s como Laplace

s=%s;

// Definimos la funcion de transferencia

num=80+72*s+25*s^2+3*s^3;

den=0+80*s+96*s^2+40*s^3+8*s^4+s^5;

// Hacemos un sistema lineal

sys_tf=syslin('c',num/den)

// Hacemos la transformacion del sistema a espacio estado

sys_ss=tf2ss(sys_tf);

// Hacemos la expansion en fracciones simples

tf=pfss(sys_ss);

for k=1:3

clean(tf(k))

end;

ans  =
    0.25 - 0.5625s   
    --------------   
                 2    
     20 + 4s + s     
 ans  =
    1
    -
    s   
 ans  =
  - 1.25 - 0.4375s   
    --------------   
                2    
      4 + 4s + s

 

Con estas ecuaciones hacemo la expansion en fracciones simples

 

funcion transferencia con entrada

 

 

descomposicion en fracciones simples de la transformada de Laplace

 

 

descomposicion en fracciones simples de la transformada de Laplace 2parte


 

descomposicion en fracciones simples de la transformada de Laplace 3parte

 

 

descomposicion en fracciones simples de la transformada de Laplace 4parte

 

 

descomposicion en fracciones simples de la transformada de Laplace 5parte

 

 

descomposicion en fracciones simples de la transformada de Laplace 6parte


 

´Transformada inversa de Laplace de la descomposicion en fracciones simples


 

Vamos a dibujar la grafica segun la funcion de transferencia y segun la ecuacion en funcion del tiempo obtenida de la expansion en fracciones simples (programado en Scilab)

 

Programa en Scilab:
// Define s como Laplace
s=%s;

// Definimos la funcion de transferencia

num=80+72*s+25*s^2+3*s^3;

den=80+96*s+40*s^2+8*s^3+s^4;

// Hacemos un sistema lineal
g=syslin('c',num/den);

//dibujamos el sistema
t=0:0.01:3;

gs=csim('step',t,g);

y=1-(9/16)*exp(-2*t).*cos(4*t)+(11/32)*exp(-2*t).*sin(4*t)-(7/16)*exp(-2*t)
-(6/16)*t.*exp(-2*t);

subplot(2,1,1);

xgrid;

xtitle('Respuesta a un escalon de 1-(9/16)*exp(-2*t)*cos(4*t)+(11/32)*exp(-2*t)
*sin(4*t)-(7/16)*exp(-2*t)-(6/16)*t*exp(-2*t)','Tiempo(seg)','Amplitud');

plot2d(t,y,3);

subplot(2,1,2);

plot2d(t,gs);

xgrid;

xtitle('Respuesta a un escalon del sistema','Tiempo(seg)','Amplitud')
Respuesta a un escalon del sistema con Scilab

 

 

Respuesta Transitoria

Español

 

Ejemplo 2.17 pag50 OGATA 4ed(Tranformada de Laplace)

Español
Vamos a resolver la siguiente ecuacion diferencial mediante scilab:
 

ecuacion diferencial segundo grado

 

\begin{displaymath}x(0)=0 \end{displaymath}

 

\begin{displaymath}\dot{x}(0)=0 \end{displaymath}

 

La Tranformada de Laplace quedaria:

Tranformada de Laplace


 

Con lo que nos quedaria:
 

Tranformada de Laplace


 

Vamos a obtener el desarrollo en fracciones simples mediante Scilab:

Programa en Scilab

s=%s

num=2;

den=s^3*(s^2+2*s+10);

g=syslin('c',num/den);

gf=tf2ss(g);

se=pfss(gf);

Resultado en Scilab:

 se  =
 
 
       se(1)
 
                        2  
    0.2 - 0.04s - 0.012s   
    --------------------   
              3            
             s             
 
       se(2)
 
    0.064 + 0.012s   
    --------------   
                2    
     10 + 2s + s

 

Con lo que el sistema nos quedaria:
 

Desarrollo en fracciones simples


 

Vamos a descomponer primero se(1) mediante scilab añadiendo mas lineas de codigo:

Lineas a añadir en Scilab

r=roots(denom(se(1)));

a(3)=horner(s^3*se(1),r(1));

a(2)=horner(derivat(s^3*se(1)),r(1));

a(1)=horner(derivat(derivat(s^3*se(1))),r(1))/2;

for k=1:3,
ds1(k)=a(k)/s^k,
end;

Resultado en Scilab del desarrollo de se(1)

 ds1  =
 
 
       ds1(1)
 
            
   -0.012   
   -------  
            
     s      
 
       ds1(2)
 
           
   -0.04   
   ------  
      2    
     s     
 
       ds1(3)
 
         
   0.2   
   ----  
     3   
    s
 
 
Con lo que la descomposicion de se1 nos queda:
 

descomposicion del primer termino

 

La descomposicion de se2 la obtendriamos:
 

decomposicion del segundo termino

 

Descomposicion del segundo termicon parte 2

 

Transformada inversa de Laplace

 

Con lo que la tranformada de Laplace nos quedaria:
 

resultado final

 

 

Problema A2.15 pag48 OGATA 4ed(Tranformada de Laplace)

Español
Vamos a obtener la Transformada inversa de Laplace mediante Scilab la siguiente funcion de tranferencia:
 

Funcion de transferencia


Programa en Scilab

s=%s

num=s^5+8*s^4+23*s^3+35*s^2+28*s+3;

den=s^3+6*s^2+8*s;

g=syslin('c',num/den);

gf=tf2ss(g);

se=pfss(gf);

for k=1:size(se),


df(k)=clean(se(k)),

end;

Solucion:

 df  =
 
 
       df(1)
 
    0.375   
    -----   
      s     
 
       df(2)
 
    0.375   
    -----   
    4 + s   
 
       df(3)
 
    0.25    
    ----    
    2 + s   
 
       df(4)
 
              2  
    3 + 2s + s

El desarrollo en fracciones simples quedaria: 

Descomposicion en fracciones simples

 

La Transformada inversa de Laplace:

 

Transformada inversa de Laplace

 

 

 

Páginas

Pin It
Subscribe to RSS - pfss