derivat

Español

Cuestion 4 (Sistema Discreto, lugar de las raices)

Problema 1 (Lugar de las raices, compensador de adelanto, error de posicion)

Problema 1 (Lugar de las raices, compensador de adelanto)

Ejemplo 2.17 pag50 OGATA 4ed(Tranformada de Laplace)

Español
Vamos a resolver la siguiente ecuacion diferencial mediante scilab:
 

ecuacion diferencial segundo grado

 

\begin{displaymath}x(0)=0 \end{displaymath}

 

\begin{displaymath}\dot{x}(0)=0 \end{displaymath}

 

La Tranformada de Laplace quedaria:

Tranformada de Laplace


 

Con lo que nos quedaria:
 

Tranformada de Laplace


 

Vamos a obtener el desarrollo en fracciones simples mediante Scilab:

Programa en Scilab

s=%s

num=2;

den=s^3*(s^2+2*s+10);

g=syslin('c',num/den);

gf=tf2ss(g);

se=pfss(gf);

Resultado en Scilab:

 se  =
 
 
       se(1)
 
                        2  
    0.2 - 0.04s - 0.012s   
    --------------------   
              3            
             s             
 
       se(2)
 
    0.064 + 0.012s   
    --------------   
                2    
     10 + 2s + s

 

Con lo que el sistema nos quedaria:
 

Desarrollo en fracciones simples


 

Vamos a descomponer primero se(1) mediante scilab añadiendo mas lineas de codigo:

Lineas a añadir en Scilab

r=roots(denom(se(1)));

a(3)=horner(s^3*se(1),r(1));

a(2)=horner(derivat(s^3*se(1)),r(1));

a(1)=horner(derivat(derivat(s^3*se(1))),r(1))/2;

for k=1:3,
ds1(k)=a(k)/s^k,
end;

Resultado en Scilab del desarrollo de se(1)

 ds1  =
 
 
       ds1(1)
 
            
   -0.012   
   -------  
            
     s      
 
       ds1(2)
 
           
   -0.04   
   ------  
      2    
     s     
 
       ds1(3)
 
         
   0.2   
   ----  
     3   
    s
 
 
Con lo que la descomposicion de se1 nos queda:
 

descomposicion del primer termino

 

La descomposicion de se2 la obtendriamos:
 

decomposicion del segundo termino

 

Descomposicion del segundo termicon parte 2

 

Transformada inversa de Laplace

 

Con lo que la tranformada de Laplace nos quedaria:
 

resultado final

 

 

Ejemplo 2.7a pag38 OGATA 4edicion(Tranformada de Laplace)

Español
Vamos a desarrollar en fracciones simples mediante Scilab la siguiente funcion de tranferencia:

Funcion de transferencia de Laplace


Programa en Scilab

s=%s

num=s^2+2*s+3;

den=(s+1)^3;

g=syslin('c',num/den);

gf=tf2ss(g);

se=pfss(gf)


Solucion:

 se  =
 
 
       se(1)
 
                2     
      3 + 2s + s      
    --------------    
               2   3  
    1 + 3s + 3s + s

Como vemos no nos ha solucionado nada debido al polo multiple, por lo que lo resolveremos como lo hacemos normalmente pero utilizando Scilab. Es decir solucionaremos las siguienter ecuaciones, para obtener los coeficientes:

 

Derivada segunda de la funcion de tranferencia


 

Derivada primera de la funcion de tranferencia


 

fraccion simple


 

La descomposicion en fracciones simples nos quedaria:

 

Desarrollo en fracciones simples


 

Esta ecuacion la programaremos con Scilab de la siguiente manera:

 

Programa en Scilab

s=%s

num=s^2+2*s+3;

den=(s+1)^3;

g=syslin('c',num/den);

rd=roots(den);

[n d k]=factors(g);

a(3)=horner(g*d(1)^3,rd(1))/2;

a(2)=horner(derivat(g*d(1)^3),rd(1));

a(1)=horner(derivat(derivat(g*d(1)^3)),rd(1))
 
 Solucion de los coeficientes:

 a  =
 
    2.  
    0   
    1.

 

El desarrollo en fracciones simples quedaria:

 

Descomponsicion en fracciones simples


 

 

Páginas

Pin It
Subscribe to RSS - derivat