Mensaje de error

  • Deprecated function: The each() function is deprecated. This message will be suppressed on further calls en book_prev() (línea 775 de /home1/montes/public_html/drupal/modules/book/book.module).
  • Notice: Trying to access array offset on value of type int en element_children() (línea 6422 de /home1/montes/public_html/drupal/includes/common.inc).
  • Notice: Trying to access array offset on value of type int en element_children() (línea 6422 de /home1/montes/public_html/drupal/includes/common.inc).
  • Notice: Trying to access array offset on value of type int en element_children() (línea 6422 de /home1/montes/public_html/drupal/includes/common.inc).
  • Deprecated function: implode(): Passing glue string after array is deprecated. Swap the parameters en drupal_get_feeds() (línea 394 de /home1/montes/public_html/drupal/includes/common.inc).

Cuestion 2 EDiferenciales 1109S2: Page 7 of 7

Solapas principales

[adsense:336x280:9156825571]
 
 
\sum_{n=0}^{\infty}( (2\cdot k\cdot n+2\cdot k)\cdot a_n + (k\cdot x-k\cdot 4)\cdot a_n +  
+(n+1)\cdot (n)\cdot b_n+ (x\cdot (n+1)-
-3\cdot (n+1))\cdot b_n +  3 \cdot b_n )\cdot x^{n+1}=0
 
\sum_{n=0}^{\infty}( (2\cdot k\cdot n)\cdot a_n + (k\cdot x-k\cdot 2)\cdot a_n +(n+1)\cdot (n)\cdot b_n+ (x\cdot (n+1)+ (-3\cdot n-3\cdot))\cdot b_n +  3 \cdot b_n )\cdot x^{n+1}=0
 
\sum_{n=0}^{\infty}( (2\cdot k\cdot n)\cdot a_n + (k\cdot x-k\cdot 2)\cdot a_n +(n+1)\cdot (n)\cdot b_n+ (x\cdot (n+1)+ (-3\cdot n))\cdot b_n )\cdot x^{n+1}=0
 
(2\cdot k\cdot n)\cdot a_n + (k\cdot x-k\cdot 2)\cdot a_n +(n+1)\cdot (n)\cdot b_n+ (x\cdot (n+1)+ (-3\cdot n))\cdot b_n=0
 
 
(2\cdot k\cdot n)\cdot a_n + (k\cdot x-k\cdot 2)\cdot a_n +(n^2+n)\cdot b_n+ (x\cdot (n+1)+ (-3\cdot n))\cdot b_n=0
 
b_n=\frac{2\cdot k\cdot n+ (k\cdot x-k\cdot 2)}{(n^2+n)+(x\cdot (n+1)+ (-3\cdot n))}\cdot a_n
 
y_2(x)=k\cdot y_1(x)\cdot ln(x)+\sum_{n=0}^{\infty} \frac{2\cdot k\cdot n+ (k\cdot x-k\cdot 2)}{(n^2+n)+(x\cdot (n+1)+ (-3\cdot n))}\cdot a_n \cdot x^{n+r}=
=\sum_{n=0}^{\infty} k\cdot (ln(x)+\frac{2\cdot n+ ( x- 2)}{(n^2+n)+(x\cdot (n+1)+ (-3\cdot n))})\cdot a_n=
 
=\sum_{n=0}^{\infty} k\cdot (ln(x)+\frac{2\cdot n+ ( x- 2)}{(n^2+n)+(x\cdot (n+1)+ (-3\cdot n))})\cdot a_n=
=-\sum_{n=0}^{\infty} k\cdot (ln(x)+\frac{2\cdot n+ ( x- 2)}{(n^2+n)+(x\cdot (n+1)+ (-3\cdot n))})\cdot\frac{(n+1)!}{(n!\cdot (n-2)!)}\cdot a_{0}
 
La solucion general de la ecuacion diferencial viene dada por:
 
y(x)=C_1\cdot y_1(x)+C_2\cdot y_2(x)
Español

Añadir nuevo comentario

Plain text

  • No se permiten etiquetas HTML.
  • Las direcciones de las páginas web y las de correo se convierten en enlaces automáticamente.
  • Saltos automáticos de líneas y de párrafos.
Pin It