[adsense:responsibe:9545213979]
Sage: solve([6*v1 - 18*v2 - 1==0,2*v1 - 6*v2 - 1/3],[v1,v2]) Resultado: [[v1 == 3*r2 + 1/6, v2 == r2]] Sage: solve([6*0 - 18*v2 - 1==0,2*0 - 6*v2 - 1/3],[v1,v2]) Resultado: [[v1 == r3, v2 == (-1/18)]] Sage: var('t C1 C2')
Sage: A = matrix([[3, -18], [2, -9]]) Sage: V=matrix([[0],[-1/18]]) Sage: U=matrix([[1],[1/3]]) Sage: SC=matrix([[1],[1/3]]) Sage: X1=U*e^(-3*t) Sage: X2=U*t*e^(-3*t)+V*e^(-3*t) Sage: M1=X1.augment(X2) Sage: dM=M1.determinant() Sage: diff(M1,t)-A*M1,dM.expand(),M1 Resultado: ( [0 0] [0 0], -1/18*e^(-6*t), [ e^(-3*t) t*e^(-3*t)] [ 1/3*e^(-3*t) 1/3*t*e^(-3*t) - 1/18*e^(-3*t)] ) Sage: X=M*SC Sage: A*X-diff(X) Resultado para comprobar la solucion del sistema de ecuaciones diferenciales [0] [0]
Añadir nuevo comentario